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Abstract--Analysis of heat transfer in the floating zone (FZ) crystal growth system with a radio-frequency 
(RF) induction heating is carried out, using the hybrid finite element and boundary element method for 
calculation of the electromagnetic and temperature fields, and applying the coordinate transformation 
method to represent exactly the unknown shapes of phase boundaries in the system. The effects of processing 
parameters, such as the RF current frequency, on FZ growth is investigated numerically, and a diagram 
for the upper and lower limits of the current density in the RF coil between which the molten zone can be 

stable is proposed. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

One of the methods of the production of high-purity 
single crystals is the floating zone (FZ) technique. In 
this technique, a relatively small zone of feed material 
in the form of a free-standing rod is melted by suitable 
heating equipment, and a single crystal is grown by 
moving the molten zone through the whole length. As 
the floating-zone melting can be processed without a 
crucible, the contamination of melt from the crucible 
can be avoided. For instance, the silicon crystal with 
the oxygen content two orders of magnitude lower by 
the FZ technique can be obtained in comparison with 
the Czochralski silicon. A radio-frequency (RF) 
induction heating is commonly used to achieve melt- 
ing in the FZ process as shown in Fig. 1, especially 
for the semiconductor materials with high electric con- 
ductivity, although there are many other heating 
methods such as thermal or light radiative methods. 
High frequency electric current in the RF coil induces 
an eddy current in the conductor, feed rod, which 
is melted by Joulean heating from the current. The 
electromagnetic field caused by the RF current also 
plays an important role in determining the shape and 

stability of the molten zone and the hydrodynamics 
in the melt through the Lorentz force. 

For the production of a perfect single crystal, it is 
important to acquire correct knowledge about the 
heat transfer and the melt convection, and to control 
them in the FZ equipment, because the crystal quality 
is closely related to the transport phenomena in the 
furnace. One of the methods used to understand the 
phenomena occurring during FZ crystal growth is 
numerical simulation. In particular, a mathematical 
model which can predict simultaneously the tem- 
perature field in the system, the melt hydrodynamics 
and the shapes of phase boundaries is useful. Exten- 
sive studies on such a mathematical model have 
recently been carried out, for an FZ growth system 
with thermal radiative heating. For instance, 
Duranceau et al. [1] carried out a numerical simu- 
lation for the silicon FZ crystal growth processes using 
a conduction-dominated thermal-capillary model, 
and investigated the effects of the processing par- 
ameters such as the crystal growth rate on the tem- 
perature distributions and interface shapes in the FZ 
system. Lan et al. [2--4] computed the melt convections 
as well as the temperature field and all interface shapes 
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NOMENCLATURE 

A angular magnetic vector potential Tmelt 
Bo Bond number 
Boe electromagnetic Bond number t 
B~ tangential magnetic field V 
Cp heat capacity [J kg -~ K ~] z 
f meniscus shape function 
G response function 
# gravitational acceleration [m s 2] 
H curvature of the meniscus 
AHf heat of fusion [J kg ~] 
NA non-dimensional number defined by 

equation (2) 
NQ non-dimensional number defined by 

equation (5) h" 
J current density i 
J~ dimensional forced current density in 

RF coil [A m 2] #o 
n outward normal unit 
Pe Peclet number P 

q~0 Q heat generation rate 
co 

q normal derivatives of A 
R~ radius of crystal [m] 
Ra radiation number 
r radial distance in cylindrical 

coordinates 
St Stefan number 
T temperature 
72 a effective ambient temperature 

dimensional temperature of silicon 
melting point [K] 
time 
crystal growth rate [m s t] 
axial distance in cylindrical 
coordinates. 

Greek symbols 
electrical conductivity ratio 

c~' electrical conductivity [S m ~] 
emissivity 

7 surface tension [N m-J] 
~ thermal conductivity ratio 

thermal conductivity [W m -~ K -~] 
reference pressure difference 
magnetic permeability in free space 
[H m -l] 
density [kg m 3] 
growth angle [rad] 
frequency [Hz]. 

Subscripts 
a free space 
c RF coil 
f feed 
m melt 
s single crystal. 

during the FZ crystal growth of NaNO3 and silicon 
under the normal- and micro-gravity, and dem- 
onstrated numerically the effect of Marangoni con- 
vection on the interface shapes. While there have been 
few theoretical studies in the FZ system with RF  heat- 
ing, because the electromagnetic field must be com- 
puted additionally and the electromagnetic force gen- 
erated by the field affects complicatedly the growth 
system. Miihlbauer et al. [5] computed the magneto- 
hydrodynamics convection in the silicon melt for the 
practical needle-eye FZ growth system, and revealed 
that the electromagnetic force exceeds all other forces 
by several orders of magnitude and the flow caused 
by the force is dominant in the melt. Riahi et aL [6] 
analyzed the effect of electromagnetic force on the 
shape of the melt surface in RF FZ system, and 
showed that the shape and stability of the molten zone 
depend upon the electromagnetic Bond number as 
well as the gravitational Bond number. 

This study's main goal is to make a program for 
calculating a total floating zone furnace. As a first 
step, we ignore the effect of melt convection. The 
purpose of the present work is to develop a math- 
ematical model, based on the conduction-dominated 
heat transfer in a small FZ crystal growth system with 
a RF  heating, which can predict the temperature and 

electromagnetic fields as well as all interface shapes in 
the system, and to extract the processing factors which 
affect the silicon FZ crystal growth. Melt convection 
was not taken into account in the present model, 
because the Prandtl number of silicon melt is relatively 
small and thus it seems that the melt convection could 
not strongly affect the temperature field in the melt. 

2. MATHEMATICAL MODEL 

The FZ crystal growth system with a radio fre- 
quency heating, which consists of the feed rod, the 
melt, the single crystal and the one-turn RF  coil as 
shown in Fig. 1, is considered here. As the electro- 
magnetic field generated by the RF coil current plays 
an important role in the deformation of the melt sur- 
face as well as the Joulean heating, the analysis of the 
electromagnetic field must be coupled with that of the 
heat transfer in the system. In the present work, a 
conduction-dominated heat transfer model in which 
melt convection is neglected is used, although the 
electromagnetic force also induces the magneto- 
hydrodynamic convection in the melt in addition to 
the natural and Marangoni convections in the RF FZ 
system. 

Any quantitative analysis of electromagnetic 
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Fig. 1. FZ crystal growth system with a radio frequency 
heating. 

phenomena must commence with Maxwell's equa- 
tions. The following are assumed in the analysis : (1) 
the system is axially symmetric; (2) the media are 
linear, isotropic and stationary; (3) the displacement 
current is unimportant in this situation and (4) there is 
no net charge in the system. Under these assumptions, 
Maxwell's equation can be transformed into the fol- 
lowing non-dimensional equation in cylindrical coor- 
dinates. 

1 0 {rOA,~_~ ~2Ai A, 
r T \  --g; ) Oz 

= - J ~  i = s,m,f,  c o r  a 

(1) 

where the single crystal, the melt, the feed rod, the RF  
coil and free space are denoted by the subscripts 's ' ,  
'm',  ' f ' ,  'c' and 'a ' ,  respectively. J~ and Aj are the 
non-dimensional angular components of the current 
density and the vector potential, respectively, and are 
normalized with the single crystal radius and the 
forced current density in the RF  coil. As every physical 
quantity can be assumed to have the conventional 
harmonic time dependency, exp(2~fi0t), J~ in equation 
(1) is given by --jaiNaA~ in the conductor ' f ,  i.e. the 
feed rod, the melt, the single crystal and the RF  coil, 
and by zero in free space. In addition, the forced 

current should be considered in the RF coil. N h is a 
non-dimensional number defined by 

NA , 2 =/~o~o~sRs (2) 

where #0 is magnetic permeability in space and ~ 
is the dimensional electric conductivity of a single 
crystal. 

In the conduction-dominated model of heat transfer 
in the FZ system, we assume that the system is axi- 
symmetric and quasi-steady. Under these assump- 
tions, the non-dimensional energy equations are given 
as follows, where the single crystal radius and the 
melting-point temperature are used as the charac- 
teristic values. 

In the single crystal and feed rod : 

OT i l 0 {  OTi'~ - - /  /Ki63Ti\ 

+½o~iNQ(Ai'A* ) i =  s,f  (3) 

In the melt : 

1 O[ OTto\ O/  OTto\ 

(4) 

The last terms in the above equations are the heat 
generation rate by the Joulean heating, where A* is 
the complex conjugate of A. Nq is a non-dimensional 
number defined by 

/ 2 t2 6 O~sO~ #oJc Rs 
NO KT~ Trmel t ( 5 )  

where T'mo~, is the melting point temperature of silicon. 
Pe is the Peclet number, and represents the non- 
dimensional crystal growth rate. It is defined by 

= pcp V ~ , .  (6) Pe 

V is the rate at which the melting zone moves down- 
ward. 

The boundary conditions for temperature fields are 
expressed as follows. 

At  the melt-single-crystal and melt-feed-rod inter- 
f a c e s  : 

C3Tm OTi 
-- Xm -~n + xi ~n  = +- PeiSt(e~" n) (7) 

i = s o r f  

Tm= T , = I .  (8) 

At the melt free surface and crystal surface : 

~Ti 4 4 
-xi~f fn = R a i ( T i - T ~ ) ,  i = m ,  s o r f .  (9) 

At the ends of the feed-rod and the single crystal : 
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aT, 
Q~n- = 0, i =  s o r f .  (10) 

In equation (7), the sign of the right-hand side is 
negative for the single crystal 's', and positive for the 
feed-rod ~f'. The length of the feed-rod and the single 
crystal should be long enough that the boundary con- 
dition, equation (10), is satisfied. St is the Stefan num- 
ber and Ra is the radiation number. St is given by 

&Hr 
St - (11) 

Cp Tmel t  

and Ra is revealed by 

~el Tmelt R~ 
Ra, i =  m, so r f .  (12) 

All interface coordinates in the system are also 
treated as part of the solution. The coordinates of the 
melt-single crystal and melFfeed-rod interfaces are 
determined so that equation (8) is satisfied, i.e. the 
interfaces coincide with the melting isotherm. While 
the shape of the melt free surface can be determined 
by solving the equation for the normal force balance 
at the surface, i.e. the Young-Laplace equation taking 
the electromagnetic force into account ; 

2H = Boz+~BoeB? + 2 (13) 

where B, is the non-dimensional tangential magnetic 
field at the surface. 2H is the mean curvature of the 
melt surface defined by the following equation with 
the radial distance, r = / (z) .  

.L: 1 
2H - (14) 

(1 +./:~)~': ,/(1 +./.~),.2 

in which the subscript 'z' denotes the derivative d/dz. 
The two non-dimensional parameters, Bo and Bo~, in 
equation (13) are defined by the following equations, 
and referred to as gravitational Bond number, and 
electromagnetic Bond number, respectively. 

Bo - pmgR~ 
7 

Bo~ - (15) I' 

To solve equation (13), we assumed a constraint in 
which the growth angle % between the melt and single 
crystal is fixed to be a constant value, e.g. I 1' in the 
case of silicon. 

3. NUMERICAL METHODS 

As the boundary in the electromagnetic phenomena 
should be placed at infinite distance, the finite element 
method (FEM), coupled with the boundary element 
method (BEM) which is suitable to deal with such a 
boundary, is used in the analysis of the electro- 
magnetic field [7], while the standard Galerkin FEM 
is applied to the heat transfer analysis. In the following 

sections, we highlight the essential features of these 
methods. 

3.1. Formulation of FEM coupled with BEM for the 
electromagnetic field 

We first draw a mathematical boundary S to enclose 
the system as shown by the dashed lines in Fig. 2(a), 
and employ the finite element method in the interior 
region, 'V',  of the boundary and the boundary 
element method in the exterior region. 

The angular component of vector potential, A, in 
the interior region is approximated with the Lag- 
rangian bilinear polynomials, ¢], defined over a mesh 
consisting of four-node quadrilateral elements and 
nodal values, A t, as follows, 

A(r,z) = ~ (a,A). (16) 
I 

Application of the Galerkin weighted residual 
method and equation (16) to equation (1) yields a set 
of algebraic equations as follows. 

('  i - - r c t r a z +  ! ~ - - ~ r d r d z  
, j ,  ~r ?~r j,, cz 

+ Ck 7_rdrdz+jNa c~k~iAi rdrdz 

--i.(i=c d~krdrdz--f.~°kqrdS=O 

i = s ,m,f ,c  or a (17) 

where q is the normal derivative of A at the boundary 
S. The integrals in equation (17) are evaluated numeri- 
cally by nine-point Gaussian quadrature. 

In the exterior region of the boundary S, the bound- 
ary element method is employed. First, we introduce 
the response function G satisfying the following equa- 
tion. 

V2G_ G = - 6 ( r - r o , Z - Z o )  (18) 
r 2 

where G corresponds to the angular component of 
the vector potential at (r, z) excited by a circular line 
current located at (r0, z0) in free space, and represented 
by the complete elliptic integrals of the first and second 
kinds, K(k) and E(k), and k2=4rro/[(r+ro)2+ 
( z - z0 f ] ,  as follows: 

2 k-5 
G n k ' , ~ r [ \ - 5 - ) K ( k ) = E ( k ) ~ "  (19) 

Multiplying equation (1) with subscript 'a '  by G 
and equation (18) by A, subtracting the resulting 
equations, and integrating them over the exterior 
region with Green's theorem, a line integral equation 
defined on the r-z plane is obtained. Then, the line 
integral equation is applied to the point (r0, z0) just on 
the boundaries which are shown by the dashed lines 
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Fig. 2. Schematic diagram of coordinate transformation. 

I regionll 

in Fig. 2(a). After a little algebra to overcome the 
singularity, the following integral equation is obtained 
[7]: 

~n --A rds-- ~roA(ro, Zo). (20) 

To discretize equation (20), we divide the bound- 
aries into one-dimensional elements by the nodal 
points used in the FEM and set sampling points at the 
center of each element. When we assume that A and 
OA/an are uniform across each section, then equation 
(20) is modified as follows. 

[F]{q} - [HI{A} = {0}. (21) 

The elements of the matrices [17] and [H] are given by 

F°--[ Wi(lnl6ri_l~ " " (22) 

t .t w, j'= J 

{fs~n =(cgG'~rw I rds \On] ° j s ivej 
H~j = 1 . . (23) 

~ r  i l = j  

where ri denotes the r coordinate of the ith sampling 
point and w~ is the length of the ith section. For  the 
coupling of the BEM with the FEM, the following 

should be satisfied, that the normal derivatives, q, 
across each element on the boundary between the 
interior and exterior regions are continuous. 

3.2. Formulation of FEM in heat transfer analysis 
Temperature fields in the melt, single crystal and 

feed rod are approximated by Lagrangian bilinear 
polynomials, 491, where the same meshes as the four- 
node quadrilateral elements in the electromagnetic 
field are used. 

T(r, z) = ~ 491 TI. (24) 
I 

The Galerkin weighted residual method and the 
solution approximation, equation (24), yield a set of 
algebraic equations given by 

-PegI,,,~m49k~rdrdz+ I¢~,, ~i ~r t~49k~ rdrdz 

+ x~-z-~-zrdrdz- ~- 49kc~,(As'A*)rdrdz 
'd i 

- fs  tci49k~rdS=O i = s ,  m o r f  (25) 
Bi 

where SBi represents the boundary surface of Vi. In the 
present analysis, the mesh is defined so that interfacial 
boundaries always lie along element edges; indeed, 
the mesh location itself is a part of the solution. The 
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melt surface shapes and the melt-feed-rod and mel t -  
single crystal interface shapes are approximated using 
the one-dimensional Lagrangian linear function F~, 
which are defined along the appropriate edges of the 
two-dimensional quadrilateral elements, 

f =  ~, F fl~ (26) 
I 

h i = ~ F ~ h i ~  i = s o r f .  (27) 
I 

The residual equations to determine the shapes of 
the interfaces and melt free surface are given as fol- 
lows : 

f F k ( T - l ) r d S = O  i = s o r f  (28) 

f IVk {2Hf(1 +f~'2) + 1} 

+ (FkJ~ +fFk~) tan '.f~] dz = 0. (29) 

3.3. C o o r d i n a t e  t r a n s f o r m a t i o n  m e t h o d  

As the interface shapes are part of the solution, the 
electromagnetic and temperature fields are implicitly 
affected by the shapes. We make the dependencies 
of the equations on the interface shapes explicit by 
transforming the equation set to the fixed cylindrical 
region in the (~t, ~) coordinate system [1]. As shown in 
Fig. 2(b), the calculation region is divided into eleven 
regions. The coordinates of region 11 including the 
RF  coil are not transformed because this region is 
isolated from other regions and is unaffected by the 
deformation of the interfaces. Ten other regions are 
needed to transform the coordinate so that the bound- 
aries of each region always lie along the boundary 
surfaces in the system. The coordinate transformation 
from the physical domain (r, z) to the transformed 
domain (r/, () was carried out with the aglebraic 
expressions which relate (r, z) to (t/, ~) as listed in 
Table 1. 

Table 1. Coordinate transformations in ten regions 

r ~  1 z--*~ 

region 1 ~/ = r / W  2 7~ = , (z--  H O / ( H 3 -  H f ) -  2 
region 2 rl = (r--  IV,.)~ ( = (z - -  HO/  

( W ~ -  W2)+ 1 (H3- H 0 - 2  
region 3 q = r /W:  g, = ( z - H 3 ) / ( h ~ - H O -  1 
region 4 rt = ( r -  IV:)~ ( = ( z - - H 3 ) / ( H s -  H3)--  1 

( w , -  w O +  l 
region 5 q = r / f  ~, = ( z - h O / ( h f - h O  
region 6 rl = ( r - f ) ~ (  W~ - J ' )  ( = ( z -  115)/(116 - Hs) 
region 7 rl = r~ WL ~ = ( z -  hO/(H4 - hO + 1 
region 8 rl = ( r -  WO/ ~ = ( z -  116)/(144-116) + I 

( w ~ -  w ~)+  l 
r e g i o n  9 r / =  r/W e ~ =(z-H4)/(H2-H4)+ 2 
region 10 r / = ( r -  WI)/  ~ = ( z - H a ) / ( H 2 - H 4 ) + 2  

( w ~ - w , ) +  l 

3.4.  I t e ra t i v e  so lu t ion  

The complete set of  the discretized equations with 
the coordinate transformation described in the pre- 
vious section is represented as follows. 

R ( x  ; p) = 0 (30) 

where R is the vector of residual equations whose 
Jacobian has the 'arrow' matrix with a banded struc- 
ture augmented with several full columns and raws, x 
is the vector of the unknowns,  i.e. vector potential, 
temperature and all interface shapes, p represents the 
model parameters, such as crystal growth rate, dimen- 
sionless heat generation rate and so on. Since the 
residual equations are nonlinear due to radiation heat 
transfer and the free boundaries, an iterative method, 
i.e. Newton's procedure, must be employed for solu- 
tion. 

4. NUMERICAL RESULTS 

In the present work, the analyses of heat transfer in 
silicon FZ growth system with a R F  heating as shown 
in Fig. 1 were carried out, with the diameter of both 
feed-rod and single crystal both set to 1 cm. Physical 
properties of silicon are listed in Table 2. 

First, we demonstrate that the coordinate trans- 
formation method described in Section 3 is useful for 
the heat transfer analysis of the RF  FZ growth system. 
Figure 3(a) shows the temperature distributions and 
the shape of molten zone, where the RF  coil current 
density, Jc, is 1.93 x 107 A m 2 and the growth rate, 
V, is 4.57 x 10 -~ m s i and the frequency of the RF  
coil, ~o, is 1.3 MHz, and no electromagnetic force 
acts on the melt surface (Boo = 0). The finite element 
meshes in this system are shown in Fig. 3(b). The 
meshes, except for the RF  coil domain, deform so that 
they coincide with the phase boundaries. The shape 
of the melt surface is remarkably deformed. The melt 

Table 2. Physical properties of silicon 

Melting point T~o~, 1683 [K] 
Latent heat solidification of AHf 1.8 × 106 [J kg ~] 

solidification 
Thermal conductivity of K'm 64 [W m ~ K ~] 

melt 
Thermal conductivity of ~- 21.8 [W ~ mK ~] 

feed 
Thermal conductivity of ~~ 21.8 [W m- ~ K '] 

single crystal 
Electrical conductivity of ct~l 1.0 × 106 [S m -  t] 

melt 
Electrical conductivity of ~ 1.2 × 106 [S m L] 

feed 
Electrical conductivity of ~ 1.2 × 10 6 [S m ]] 

single crystal 
Magnetic permeability #0 1.257 x 10 -~ [H m ~] 
Density of melt Pm 2420 [kg m -3] 
Density of feed and single Pfa,d~ 2300 [kg m-3] 

crystal 
Surface tension 1' 7.2 x 10 -L [N m ~] 
Contact angle ~o0 11 [deg] 
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Fig. 5. Effect of J~ on heat generation rate along the surface 
by Joulean heating for ~o = 1.3 MHz and V = 4.57 x 10 -5 
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Fig. 3. (a) Temperature field in the molten zone and the 
interface shapes for J~ = 1.93 x l07 A m - 2  and Boo = 0. (b) 

Finite element discretization. 

zone in the figure corresponds to the longest one up 
to which the molten zone is stable under the above- 
mentioned processing parameters. 

Figure 4 shows the effect of  the current density in 
the R F  coil, J~, on the temperature fields and the 
shapes of  molten zone, where the frequency of  the R F  

current in the coil, co, is 1.3 MHz,  the growth rate, V, 
is 4.57 x 10 -5 m s - I  and the electromagnetic force 
induced by the R F  current acts on the melt surface. 
As the electromagnetic Bond number,  Boe, is pro- 
portional to J ~  as shown in equation (15), Boo 
becomes large with J~. The melt length increases as 
J~ increases since the heat generation rate along the 
surface by Joulean heating increases as shown in Fig. 
5. The R F  coil is placed between Z = - 0 . 5  and 0.5 in 
Fig. 5. The heating power is the largest beside the 
center of  the coil, but  from Fig. 4, the point with the 
maximum temperature in the melt and thus the center 
of  the molten zone is slightly below the center of  the 
coil, because of  the effect of  the latent heat of  fusion 
and solidification at each phase boundary. 

As was mentioned earlier, the electromagnetic field 
generated by the R F  current plays an important  role 
in the determining shape and stability of  the molten 
zone through the electromagnetic force, which is gen- 
erally considered to stabilize the melt because it is 
directed inward. To investigate the effect of  the 
electromagnetic force in the R F  FZ  system, we cal- 
culate the case of  Boe = 0 and compare it with the 
results in Fig. 4. Figure 6 shows the temperature dis- 
tributions and the shapes of  the molten zone cal- 
culated with the same processing parameters as in Fig. 

RF coil 

J' =1.6x10 "7 A/m 2 J, . l .7x10 7 A/m ~ J' =l.8xl0 7 A/m 2 

(Bo,=55.9) (Bo~-63.1) (Bo~=70.7) 

Fig. 4. Effect of the RF current density on the temperature fields and the shape of molten zone (A T = 0.002). 
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RF coil 

J'c=l.6xl07 A/m 2 J'c=1.7x107 A/m: J'~=l.8xl07 A/m 2 

Fig. 6. Effect of J~ on the temperature fields and the shape of molten zone for Boc = 0 (A T = 0.002). 

RF coil 

to=l.0 MHz to=l.3 MHz {o=1.6 MHz 
Fig. 7. Effect of the current frequency in the RF coil on the temperature fields and the shape of molten 

zone (AT = 0.002). 

4 except for Bo~ = 0. The length of  mol ten  zone is 
longer and  the average tempera ture  in the melt  is 
higher in compar i son  with the results in Fig. 4. Also, 
we notice tha t  the mel t  surface with non-zero  Boo is 
more  remarkably  deformed inward due to the electro- 
magnet ic  force acting on the melt  surface, compared  
with the results for J~ = 1.8 × l 0  7 in Fig. 4 and  for 
1.7 x 10 7 A m -2 in Fig. 6 which have almost  the same 
melt  lengths. 

Figure 7 shows the effect of  the applied RF  fre- 
quency on the tempera ture  field and  the shapes of  
mol ten  zone for J c  = 1.7 × 10 7 A m 2 and  
V =  4.57 × 10 -5 m s 1. This figure reveals tha t  the 
melt  length becomes longer as the frequency increases. 
The dis t r ibut ions of  the heat  generat ion rate along the 
surface are also shown in Fig. 8. 

In the F Z  crystal growth process, the stability of  
the mol ten  zone is very impor t an t  for the operat ion.  
Figure 9 shows the calculated d iagram for the upper  
and  lower limits of  the R F  current  density in the coil 
between which the mol ten  zone can be formed stably. 
Below the lower limit of  Jc for a given ~o, the zone is 
no t  completely melted and  a solid core remains in the 
center. While beyond the upper  limit, the mol ten  zone 
becomes unstable  and  wilt separate into two hemi- 

spheres a t tached to the rods. F rom Fig. 9, bo th  the 
upper  and  lower limits of  J~ decrease as 09 increases. 

Figure 10 shows the effect of  the rate of  crystal 
growth on the tempera ture  dis t r ibut ions in the melt  
and  the shapes of  the mol ten  zone, where J~ is 1.7 × 107 
A m -2 and  e3 is 1.3 MHz.  The length of  the mol ten  
zone is not  so sensitive to the rate of  crystal growth.  
On the other  hand,  the feed-melt interface becomes 
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Fig. 8. Effect of co on heat generation rate along the surface 
by Joulean heating for J ~ = l . 7 x l 0 7  A m -2 and 

V = 4 . 5 7 × 1 0 - S m s  -~. 
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Fig. 9. Diagram for the upper and lower limits of J~ in an RF FZ system. 
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Fig. 10. Effect of crystal growth rate on the temperature fields and the shape of molten zone for J'c 
= 1.7 x 1 0  7 A m -2 and ~ = 1.3 MHz (AT = 0.002). 

more  convex to the melt,  and  the mol ten  zone moves  
down relative to the R F  coil due to the effect of  the 
la tent  heat  a t  the interfaces. 

5. CONCLUSIONS 

We have developed a me thod  for calculat ing the 
radio frequency f loating zone processes. Fini te  
e lement  me thod  and  bounda ry  element  me thod  are 
combined  to calculate the electromagnetic  and  tem- 
pera ture  fields. A coordinate  t r ans fo rmat ion  is useful 
to analyze a R F  F Z  system with deformed interface 
shapes. The effects of  the cur ren t  density and  fre- 
quency of  R F  coil and  of  the rate of  crystal  growth  
on  the tempera ture  field and  interface shapes in the 
F Z  system were investigated numerically. F r o m  the 
numerical  results, the electromagnetic  forces acting on  
the melt  surface affect the shapes of  the mol ten  zone. 
We  also ob ta ined  a d iagram for  the upper  and  lower 
limits o f  the forced current  density in the R F  coil 
between which the mol ten  zone can be stable. 
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